

Material left to cover in semester:

1. Assumptions of regression
2. Diagnostics to determine whether the assumptions are being met
3. Solutions to use when an assumption isn't being met, including variable transformations, interactions, and Dummy Variables

For example, a quadratic polynomial is:

$$
Y=a+b_{1} X+b_{2} X^{2}
$$

and a cubic model is:
$y=a+b_{1} X+b_{2} X^{2}+b_{3} X^{3}$

Curvilinear transformations
Most common are polynomial transformations which are simply models with the X transformed to a certain "power" (e.g., squared, cubed).

Note that whenever you add a higher power, you must always include terms for all the lower order powers.

The quadratic polynomial is used when the relationship between the dependent and independent variable has one curve. For example, this might include the relationship between income and age.

Using nominal variables (creating dummies)

Nominal variables cannot be included in an OLS regression equation in the same way as interval-ratio variables since they are not linear variables.

For example: if we want to include the variable "race" in our regression equation and it is coded:

$$
\begin{aligned}
& 1=\text { white } \\
& 2=\text { black } \\
& 3 \text { = other }
\end{aligned}
$$

then we would create three
variables, one for each category of the variable "race"

To create the new variables:
In SPSS, go to transform, then "recode into another variable"
we then use the dichotomous variable race to create the variable "white" where:

$$
\begin{aligned}
& 1=\text { white } \\
& 0=\text { black } \\
& 0=\text { other }
\end{aligned}
$$

That is, for the new variable, if a person is white he/she will be coded "1" and coded " 0 " if anything other than white

Similarly we create a new variable called "black" where:

$$
\begin{aligned}
& 1=\text { black } \\
& 0=\text { white } \\
& 0=\text { other }
\end{aligned}
$$

and the variable "other" where:

$$
\begin{aligned}
& 1=\text { other } \\
& 0=\text { white } \\
& 0=\text { black }
\end{aligned}
$$

Rationale for leaving out one of the dummy variables:

One variable must be left out so that the regression equation can calculate the regression line.

If all the dummy variables are included in the regression equation, it will not be mathematically possible to create a regression line.
With these variables created we can then include the concept of "race" into the regression equation by including two of the three new "race" variables in the regression.

The one variable we leave out can be examined and interpreted by viewing the "a" coefficient.

How do we know if the dummy variables significantly reduce error in the dependent variable?

We can use an f test to compare the R^{2} when only the continuous variables are included in the regression equation, to the R^{2} when the continuous variables and the dummies are included. If there is a significant difference, then the dummy variables have significantly increased the variation explained
beyond that of the continuous variables.

Which dummy variable should be omitted?

One choice is to omit that variable that you have the most interest in statistically comparing to those that are included.

It has been found that leaving out a dummy variable with a small number of cases, can create biased regression coefficients.

How is the "a" coefficient interpreted when there are continuous variables in the regression equation?

Note: a regression equation with both dummy variables and continuous variables is referred to as an analysis of covariance (ANCOVA)

The same as if only the dummy variables were included.

In a regression equation with no dummy variables, the " a " coefficent is the average score of the respondents when each of the independent variables equals zero.

When dummy variables are included the "a" coefficient represents the average for the left out dummy variable after controlling for the independent (continuous) variables.

A third type of "transformation" can be thought of as interactions.

In a linear regression model, a one unit increase in X_{1} always produces a change of B_{1} units in Y.

Now let's suppose the effect of X on Y depends on the value of another independent variable.

For example, the effect of age on income may depend on the person's education. Or, in other words, there is an interaction between age and education in their effects on income.

We could also say that the slope of income on age is steeper for those with more education.

If we want to test our example we could create the following model:
$Y=a+B_{1} a g e+B_{2}$ educ. $+B_{3} a g e^{*}$ educ.
This equation has both age and education entered in the usual way, but also has the product of age and educ. as an additional variable.

Once the regression has been performed the first thing to do is exam the p value for the product variable.

If it is significant, you can conclude that there is strong evidence that the effect of age on income depends on the level of education.

Interpreting regression results with an interaction variable

Each variable involved in the interaction variable (called the main-effect variables) has its own b coefficient and they each have a special (and often not very useful) interpretation when an interaction variable is present.

More specifically, we would say that the b coefficient for age can be interpreted as the effect of age when education is zero.
$Y=a+b_{1} a g e+b_{2}$ educ. $+b_{3} a g e^{*}$ educ.
Similarly, the coefficient for education can be interpreted as the effect of education when age is zero.

The way to interpret the b for the product variable is to calculate the effect of age on income for different values of education.

Mathmatically, the effect of age on income is:

Income $=b_{1}$ age $+b_{2}$ educ $+\left(b_{3}\right.$ * education $)$
b_{3} represents the estimate for the product term; let's look at this example further:

TABLE 8.2			
Regression of Income on Schooling, Age, and Their Interaction			
Variable	Coefficient	Standard Error	p Value
Intercept	88,159	33,131	
Schooling	$-7,649$	2,696	.012
Age	$-1,770$	659	.008
Schooling \times Age	207	55.4	.001
R^{2}	.50		

The effect of age on income for a specific value of education, let's say 9 years, would be:
$\left(b_{1}\right.$ age $+\left(b_{3}\right.$ * education $\left.)=y\right)$

$$
-1,770+(207 * 9)=\$ 93
$$

What would be the effect of age on income for 12 years of school?

Here are additional effects that have been calculated

TABLE 8.3

Years of Schooling	Effect of Age on Income	
9	$93-(9 * 207)-1,770$	
12	714	b for
14	1,128	intaraction
16	1,542	term
20	2,370	

In Table 8.5, what is the dependent variable and the independent variables?

TABLE 8.5 Regression of Income (Dollars) on Schooling, Marital Status, and Their Interaction

Variable	Cocfficient	p Value
Age	652	.003
Schooling	-980	57
Married	$-48,592$.04
Schooling \times Married	3,912	.04
Intercept	8,404	

Interpetation: The coefficient for the product term ($\$ 3,912$) is the additional effect of schooling when the person is married, so the effect of schooling for married respondents is:
(b_{1} Schooling + (b_{2} * Married) $=y$ $-980+3,912=\$ 2,932$
Each additional year of schooling brings \$2,932 more income for those married. For those not married, income goes down -980 for each year of schooling.

TABLE 8.5 Regression of Income (Dollars) and Their Interaction Schooling, Marital Status,		
Varriable	Cosfficient	p Value
Age	652	.003
Sctooling	-980	57
Married	$-48,592$	04
Schooling \times Married	3,92	04
Intercopt	8,404	

What about the effect of being married?
Interpetation: The coefficient for married $(-\$ 48,592)$ says that among respondents with no education, those who are married make about $\$ 49,000$ less than those who are unmarried. Further, among those with, lets say, 6 years of schooling, they make about $\$ 25,000$ less.

$$
b_{1} \text { Married }+\left(b_{2} \text { * Schooling }\right)=y
$$

$$
-48,592+(3,912 * 6)=-25,120
$$

TABLE 8.5 Regression of Income (Dollars) on Schooling, Marital Status, and Their Interaction

Variable	Coefficient	p Value
Age	652	.003
Schooling	-980	57
Married	$-48,592$	04
Schooling \times Married	3,912	04
ltueropt	8,404	

