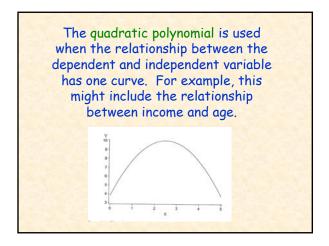
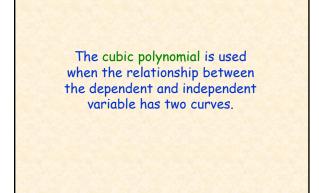
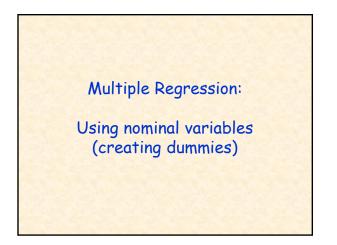

	statistico (depenc				self est		
164 ৰ	APPLIED MULTIVA		SEARCH	the vi	oution to		ate between
also	bii	relation		beta	Squared Semipartial Correlation	Structure	
a could'	Positive affect	.55	2.89	.40	.14	1000000000000000	
tai	Negative affect	57	-2.42	43	.19	82	10.61*
natix of	Openness	.22	.11	.05	.00	32	1.64
	Constant		56.66	1	tunder bied)		1.04
all vars.	(Fintercept)						




Curvilinear transformations


Most common are polynomial transformations which are simply models with the X transformed to a certain "power" (e.g., squared, cubed).

For example, a quadratic polynomial is: $Y = a + b_1 X + b_2 X^2$ and a cubic model is: $Y = a + b_1 X + b_2 X^2 + b_3 X^3$

Note that whenever you add a higher power, you must always include terms for all the lower order powers.

Nominal variables cannot be included in an OLS regression equation in the same way as interval-ratio variables since they are not linear variables.

However, there is a way of "transforming" the nominal variable so that it can be included.

This requires creating a separate variable for each category of the nominal variable (called dummy variables). These can then be included in the regression equation (although one of the newly created "dummy" variables must be left out of the regression equation) For example: if we want to include the variable "race" in our regression equation and it is coded:

> 1 = white 2 = black 3 = other

then we would create three variables, one for each category of the variable "race" To create the new variables: In SPSS, go to transform, then "recode into another variable"

we then use the dichotomous variable race to create the variable "white" where:

> 1 = white 0 = black 0 = other

That is, for the new variable, if a person is white he/she will be coded "1" and coded "0" if anything other than white

Similarly we create a new variable called "black" where:

1 = black 0 = white 0 = other

and the variable "other" where:

1 = other 0 = white 0 = black

With these variables created we can then include the concept of "race" into the regression equation by including two of the three new "race" variables in the regression.

The one variable we leave out can be examined and interpreted by viewing the "a" coefficient.

Rationale for leaving out one of the dummy variables:

One variable must be left out so that the regression equation can calculate the regression line.

If all the dummy variables are included in the regression equation, it will not be mathematically possible to create a regression line.

Interpreting Dummy Variables: Suppose our output shows the following:

Job Satisfaction = 4.02 + .32X₁ + -.18X₂

Where: X_1 = Blacks and X_2 = Others and the t values for both are significant (the left out dummy variable is whites)

Job satisfaction for Whites = 4.02 (average)

Blacks job satisfaction on average is significantly higher than whites at 4.34 (4.02 + .32)

Others job satisfaction on average is significantly less than Whites at 3.84 (4.02 - .18)

Interpreting the "*t*" value for dummy variables in the regression equation

The t test associated with a given dummy variable tests for the difference between the mean of the dummy variable in the equation and the mean of the dummy variable left out of the regression equation.

(remember that the t tests for continuous variables tests whether the independent variable significantly increases the variance explained in the dependent variable) How do we know if the dummy variables significantly reduce error in the dependent variable?

We can use an f test to compare the R² when only the continuous variables are included in the regression equation, to the R² when the continuous variables and the dummies are included. If there is a significant difference, then the dummy variables have significantly increased the variation explained beyond that of the continuous variables.

Which dummy variable should be omitted?

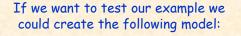
One choice is to omit that variable that you have the most interest in statistically comparing to those that are included.

It has been found that leaving out a dummy variable with a small number of cases, can create biased regression coefficients.

How is the "a" coefficient interpreted when there are continuous variables in the regression equation?

Note: a regression equation with both dummy variables and continuous variables is referred to as an analysis of covariance (ANCOVA) The same as if only the dummy variables were included.

In a regression equation with no dummy variables, the "a" coefficent is the average score of the respondents when each of the independent variables equals zero.


When dummy variables are included the "a" coefficient represents the average for the left out dummy variable after controlling for the independent (continuous) variables.

A third type of "transformation" can be thought of as interactions.

In a linear regression model, a one unit increase in X_1 always produces a change of B_1 units in Y.

Now let's suppose the effect of X on Y depends on the value of another independent variable. For example, the effect of age on income may depend on the person's education. Or, in other words, there is an interaction between age and education in their effects on income.

We could also say that the slope of income on age is steeper for those with more education.

 $Y = a + B_1 age + B_2 educ. + B_3 age*educ.$

This equation has both age and education entered in the usual way, but also has the product of age and educ. as an additional variable. Once the regression has been performed the first thing to do is exam the p value for the product variable.

If it is significant, you can conclude that there is strong evidence that the effect of age on income depends on the level of education.

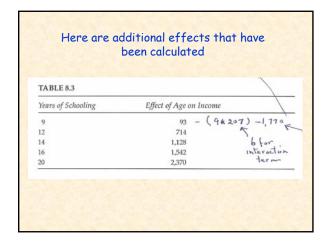
Interpreting regression results with an interaction variable

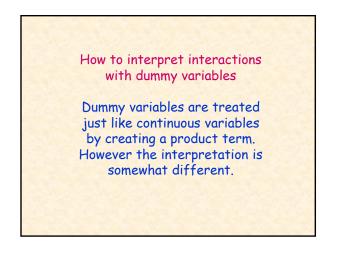
Each variable involved in the interaction variable (called the main-effect variables) has its own b coefficient and they each have a special (and often not very useful) interpretation when an interaction variable is present. More specifically, we would say that the *b* coefficient for age can be interpreted as the effect of age when education is zero.

 $Y = a + b_1 age + b_2 educ. + b_3 age^*educ.$

Similarly, the coefficient for education can be interpreted as the effect of education when age is zero.

Typically, we are not concerned about the significant effects of the two main effects or of their interpretation.

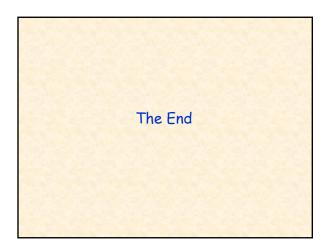

Rather we are interested in interpreting the b for the interaction variable (however the main effect variables should remain in the equation). The way to interpret the b for the product variable is to calculate the effect of age on income for different values of education.


Mathmatically, the effect of age on income is:

Income = $b_1age + b_2educ + (b_3 * education)$

b₃ represents the estimate for the product term; let's look at this example further:

Variable	Coefficient	Standard Error	p Value
ntercept	88,159	33,131	
Schooling	-7,649	2,696	.012
Age .	-1,770	659	.008
Schooling × Age	207	55.4	.001
R ²	.50		
The	e effect of	age on income t f education. let	for a 's sav
spec	ific value o 9 year	age on income f f education, let s, would be: f education) = Y	's say
spec	ific value o 9 year p ₁ age + (b ₃ *	f education, let s, would be:	's say



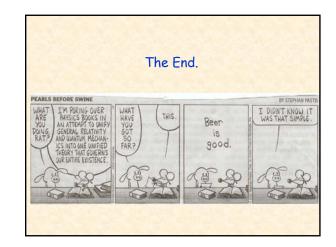


TABLE 8.5 Regression and Their I	of Income (Dollars) on Sc nteraction	hooling, Marital St
Variable	Coefficient	p Value
kge	652	.003
hooling	-980	.57
arried	-48,592	.04
hooling × Married	3,912	.04
tercept	8.404	

		r the product tern of schooling when
		ct of schooling fo
	ried respondent	
(b ₁ Schoo	ling + (b2 * Mar	ried) = Y
-98	0 + 3.912 = \$2.	932
ach additional yea	r of schooling b	orings \$2,932 mor
income for those	marriea. For t	nose not married,
		year of schooling.
income goes down		year of schooling.
income goes down	-980 for each	year of schooling.
TABLE 8.5 Regression	-980 for each	year of schooling.
TABLE 8.5 Regression and Their Ir	-980 for each	year of schooling.
TABLE 8.5 Regression and Their Ir Variable	-980 for each of Income (Dollars) on Sc iteraction Coefficient	year of schooling. hooling, Marital Status, p Value
TABLE 8.5 Regression and Their Ir Variable Age	-980 for each of Income (Dollars) on Sc theraction Coefficient 652	year of schooling. hooling, Marital Status, p Value .003
TABLE 8.5 Regression and Their Ir Variable Age Schooling	-980 for each of Income (Dollars) on Sc Interaction Coefficient 452 -980	year of schooling. hooling, Marital Status, p Value .003 .57

What about th	ne effect of be	ing married?
Interpetation:	The coefficier	nt for married
\$48 592) save t	hat among rest	condents with no
education, those		
\$49,000 less tl	han those who a	are unmarried.
urther among t	hose with lets	say, 6 years of
	nose with, iers	Suy, o years of
	a second and a second of	25 000 1-44
schooling, the	y make about \$	
schooling, the	y make about \$ d + (b ₂ * Schoo	
schooling, the b ₁ Marrie	d + (b2 * Schoo	oling) = Y
schooling, the b ₁ Marrie		oling) = Y
schooling, the b ₁ Marrie -48,592 TABLE 8.5 Regression	$d + (b_2 * School+ (3,912 * 6) =$ of Income (Dollars) on Sc	ling) = Y -25,120
schooling, the b ₁ Marrie -48,592 TABLE 8.5 Regression and Their Ir	$d + (b_2 * School+ (3,912 * 6) =$ of Income (Dollars) on Sc	ling) = Y -25,120
schooling, the b ₁ Marrie -48,592 TABLE 8.5 Regression	$d + (b_2 * School+ (3,912 * 6) =$ of Income (Dollars) on Sc	ling) = Y -25,120
schooling, the b ₁ Marrie -48,592 TABLE 8.5 Regression and Their Ir	$d + (b_2 * School) + (3,912 * 6) =$ of Income (Dollars) on Scheraction	ling) = Y -25,120 hooling, Marital Status,
schooling, the b ₁ Marrie -48,592 TABLE 8.5 Regression and Their In Variable	$d + (b_2 * School+ (3,912 * 6) = 0$ of Income (Dollars) on Setteraction Coefficient	ling) = Y -25,120 hooling, Marital Status, p Value
schooling, the b ₁ Marrie -48,592 TABLE 8.5 Regression and Their Ir Variable Age	$d + (b_2 * School+ (3,912 * 6) =$ of Income (Dollars) on Sc teraction Coefficient 652	ling) = Y -25,120 hooling, Marital Status, p Value .003
schooling, the b1 Marrie -48,592 TABLE 8.5 Regression and Their Ir Variable Age Schooling	$\frac{d + (b_2 * School+ (3,912 * 6) = 0}{(3,912 * 6)} = 0$	ling) = Y -25,120 hooling, Marital Status, p Value .003 .57

